Selected publications
Technical report
2025
Distribution-on-scalar Single-index Quantile Regression Model for Handling Tumor Heterogeneity X.C. Zhou, S. Ding, J. Wang, R. Liu, L.L. Kong & C. Huang
Techonometrics, 2025+, https://doi.org/10.1080/00401706.2024.2441686
Communication-efficient non-convex distributed learning with error feedback for uplink and downlink X.C. Zhou, Le Chang & Jinde Cao
IEEE Transactions on Neural Networks and Learning Systems, 2025+, https://ieeexplore.ieee.org/document/10327766
2024
Confounder adjustment in single index function-on-scalar regression model S.X. Ding, X.C. Zhou, J.G Lin, R.J. Liu & C. Huang
Electronic Journal of Statistics, 18(2) 5679 - 5714, 2024.
Shape Mediation Analysis in Alzheimer’s Disease Studies X.C. Zhou, M. Yeon, J. Wang, S. Ding, K. Lei, Y.Y. Zhao, R.J. Liu, C. Huang & ADNI
Statistics in Medicine, 43:5698–5710, 2024.
Efficient distributed transfer learning for large-scale Gaussian graphic models X.C. Zhou, H.T. Zheng, H.R. Zhang & C. Huang
Stat, 13: e70004, 2024.
Communication-efficient Byzantine-robust distributed inference with error feedback: a trade-off between compression and adversary X.C. Zhou, G. Yang, L. Chang & S.G. Lv
Information Sciences, 678: 121010, 2024.
Empirical likelihood M-estimation for the varying-coefficient model with functional response X.C. Zhou, D.H. Kong, M. Pietrosanu, L.L. Kong & R. Karunamuni
Scandinavian Journal of Statistics, 51:1357–1387, 2024.
Distributed bootstrap simultaneous inference for high-dimensional quantile regression X.C. Zhou Z.Y. Jing & C. Huang
Mathematics, 12(5), 735, 2024.
2023
Functional Response Quantile Regression Model X.C. Zhou, D.H. Kong, A.B. Kashlak, L.L. Kong, R. Karunamuni & H.T. Zhu
Statistica Sinica, 33, 2643-2667, 2023.
Communication-efficient Byzantine-robust distributed learning with statistical guarantee X.C. Zhou, L. Chang, P.F. Xu & S.G. Lv
Pattern Recognition, 137: 109312, 2023.
2022
Reproducing kernel-based functional linear expectile regression M.C. Liu, P. Matthew, P. Liu, B. Jiang, X.C. Zhou & L.L. Kong
The Canadian Journal of Statistics, 50(1):241-266, 2022.
Uniform convergence rates for wavelet curve estimation in sup-norm loss X.C. Zhou
Journal of Computational and Applied Mathematics, 400, 113752, 2022.
Panel semiparametric quantile regression neural network for electricity consumption forecasting X.C. Zhou, J.Y. Wang, H.X. Wang & J.G. Lin
Ecological Informatics, 67, 101489, 2022.
ADMM-Based Differential Privacy Learning for Penalized Quantile Regression on Distributed Functional Data X.C. Zhou & Y. Xiang
Mathematics, 10(16), 2954, 2022.
Communication-efficient distributed learning for high-dimensional support vector machine X.C. Zhou & H. shen
Mathematics, 10(7), 1029, 2022.
2021
The asymptotic properties of scad penalized generalized linear models with adaptive designs Q.B. Gao, C.H. Zhu, X.L. Du, X.C. Zhou & D.X. Yin
Journal of Systems Science & Complexity, 34: 759–773, 2021
Panel quantile regression neural network for electricity consumption forecasting in China: a new framework X.C. Zhou & J.Y. Wang
Energy Sources, Part B: Economics, Planning, and Policy, 16(5): 420-442, 2021
2008-2020
A General Framework for Quantile Estimation with Incomplete Data P.S. Han,L.L. Kong,J.W. Zhao & X.C. Zhou
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 81(2): 305-333, 2019 (Top)
Berry-Esseen bounds for wavelet estimator in time-varying model with censored dependent data X.C. Zhou, B.B. Ni, H.X. Wang & X.F. Huang
Mathematica Slovaca, 69(5), 1213-1232, 2019
Wavelet estimation in time-varying coefficient models X.C. Zhou, B.B. Ni & C.H. Zhu
Lithuanian Mathematical Journal, 59(2): 276-293, 2019
Wavelet-based LASSO in functional linear quantile regression Y.F. Wang, L.L. Kong, B. Jiang, X.C. Zhou, S.M. Yu, L. Zhang & G. Heo
Journal of Statistical Computation and Simulation, 89(6): 1111-1130, 2019
Asymptotics of a wavelet estimator in the nonparametric regression model with repeated measurements under a NA error process X.C. Zhou & J.G. Lin
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A--Matematicas, 109:153-168, 2015
Empirical likelihood inference in mixtures of semiparametric varying coefficient EV models for longitudinal data with nonignorable Dropout X.C. Zhou & J.G. Lin
Journal of the Korean Statistical Society, 42: 215-225, 2013
On moments of the maximum of partial sums of moving average processes under dependence assumptions X.C. Zhou & J.G. Lin
Acta Mathematicae Applicatae Sinica, English Series, 27: 691-696, 2011
Moment consistency of estimators in partially linear models under NA samples X.C. Zhou, X.S. Liu & S.H. Hu
Metrika, 72(2): 415-432, 2010
|