Selected publications by topics
Functional data analysis
Distribution-on-scalar Single-index Quantile Regression Model for Handling Tumor Heterogeneity X.C. Zhou, S. Ding, J. Wang, R. Liu, L.L. Kong & C. Huang
Techonometrics, 2025+, https://doi.org/10.1080/00401706.2024.2441686
A General Framework for Quantile Estimation with Incomplete Data P.S. Han,L.L. Kong,J.W. Zhao & X.C. Zhou
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 81(2): 305-333, 2019 (Top)
Shape Mediation Analysis in Alzheimer’s Disease Studies X.C. Zhou, M. Yeon, J. Wang, S. Ding, K. Lei, Y.Y. Zhao, R.J. Liu, C. Huang & ADNI
Statistics in Medicine, 43:5698–5710, 2024.
Confounder adjustment in single index function-on-scalar regression model S.X. Ding, X.C. Zhou, J.G Lin, R.J. Liu & C. Huang
Electronic Journal of Statistics, 18(2) 5679 - 5714, 2024.
Empirical likelihood M-estimation for the varying-coefficient model with functional response X.C. Zhou, D.H. Kong, M. Pietrosanu, L.L. Kong & R. Karunamuni
Scandinavian Journal of Statistics, 51:1357–1387, 2024.
Functional Response Quantile Regression Model X.C. Zhou, D.H. Kong, A.B. Kashlak, L.L. Kong, R. Karunamuni & H.T. Zhu
Statistica Sinica, 33, 2643-2667, 2023.
Reproducing kernel-based functional linear expectile regression M.C. Liu, P. Matthew, P. Liu, B. Jiang, X.C. Zhou & L.L. Kong
The Canadian Journal of Statistics, 50(1):241-266, 2022.
Wavelet-based LASSO in functional linear quantile regression Y.F. Wang, L.L. Kong, B. Jiang, X.C. Zhou, S.M. Yu, L. Zhang & G. Heo
Journal of Statistical Computation and Simulation, 89(6): 1111-1130, 2019
Statistical machine learning
Communication-efficient non-convex distributed learning with error feedback for uplink and downlink X.C. Zhou, Le Chang & Jinde Cao
IEEE Transactions on Neural Networks and Learning Systems, 2025+, https://ieeexplore.ieee.org/document/10327766
Efficient distributed transfer learning for large-scale Gaussian graphic models X.C. Zhou, H.T. Zheng, H.R. Zhang & C. Huang
Stat, 13: e70004, 2024.
Communication-efficient Byzantine-robust distributed inference with error feedback: a trade-off between compression and adversary X.C. Zhou, G. Yang, L. Chang & S.G. Lv
Information Sciences, 678: 121010, 2024.
Distributed bootstrap simultaneous inference for high-dimensional quantile regression X.C. Zhou Z.Y. Jing & C. Huang
Mathematics, 12(5), 735, 2024.
Communication-efficient Byzantine-robust distributed learning with statistical guarantee X.C. Zhou, L. Chang, P.F. Xu & S.G. Lv
Pattern Recognition, 137: 109312, 2023.
ADMM-Based Differential Privacy Learning for Penalized Quantile Regression on Distributed Functional Data X.C. Zhou & Y. Xiang
Mathematics, 10(16), 2954, 2022.
Communication-efficient distributed learning for high-dimensional support vector machine X.C. Zhou & H. shen
Mathematics, 10(7), 1029, 2022.
Panel semiparametric quantile regression neural network for electricity consumption forecasting X.C. Zhou, J.Y. Wang, H.X. Wang & J.G. Lin
Ecological Informatics, 67, 101489, 2022.
Panel quantile regression neural network for electricity consumption forecasting in China: a new framework X.C. Zhou & J.Y. Wang
Energy Sources, Part B: Economics, Planning, and Policy, 16(5): 420-442, 2021
Methodology and theory on Mathematical Statistics and Probability
Uniform convergence rates for wavelet curve estimation in sup-norm loss X.C. Zhou
Journal of Computational and Applied Mathematics, 400, 113752, 2022.
The asymptotic properties of scad penalized generalized linear models with adaptive designs Q.B. Gao, C.H. Zhu, X.L. Du, X.C. Zhou & D.X. Yin
Journal of Systems Science & Complexity, 34: 759–773, 2021
Berry-Esseen bounds for wavelet estimator in time-varying model with censored dependent data X.C. Zhou, B.B. Ni, H.X. Wang & X.F. Huang
Mathematica Slovaca, 69(5), 1213-1232, 2019
Wavelet estimation in time-varying coefficient models X.C. Zhou, B.B. Ni & C.H. Zhu
Lithuanian Mathematical Journal, 59(2): 276-293, 2019
Asymptotics of a wavelet estimator in the nonparametric regression model with repeated measurements under a NA error process X.C. Zhou & J.G. Lin
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A--Matematicas, 109:153-168, 2015
Empirical likelihood inference in mixtures of semiparametric varying coefficient EV models for longitudinal data with nonignorable Dropout X.C. Zhou & J.G. Lin
Journal of the Korean Statistical Society, 42: 215-225, 2013
On moments of the maximum of partial sums of moving average processes under dependence assumptions X.C. Zhou & J.G. Lin
Acta Mathematicae Applicatae Sinica, English Series, 27: 691-696, 2011
Moment consistency of estimators in partially linear models under NA samples X.C. Zhou, X.S. Liu & S.H. Hu
Metrika, 72(2): 415-432, 2010
|